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Executive Summary 
In an effort to reduce uncertainty in the locations and counts of its customers’ lead service lines, the 
Pittsburgh Water and Sewer Authority (PWSA) hired researchers at the University of Pittsburgh to estimate 
the probability that each of its residential customers’ public and private water service line is made from lead 
and predict as lead or non-lead each service line.  

PWSA provided observed service line materials for 8,100 of its 70,000 residential customers. We first cross 
referenced these observations with PWSA’s historical records, which are currently used to plan service line 
replacements and thus serve as a point of comparison for predictive modeling. We then used these 8,100 
to predict service line materials for 61,000 PWSA customers, representing 98% of PWSA’s residential 
customers. The remaining 1.6% of customers had too little information to support predictions.   

We explored three primary applications of the model: prioritizing an annual cycle of replacements (or 
excavations); prioritizing a larger number of replacements (or excavations); and estimating inventories by 
service line material. With respect to estimating inventories by material, predictions demonstrate only 
marginal value: the model was 73% precise whereas the historical data have been 63% precise to date. 
The reason for this is that too few predicted probabilities are extreme enough (high or low) to discriminate 
well lead from non-lead service lines for all customers. As a result, Pitt does not recommend using the 
current model for estimating inventories of service line by material.  

However, there does appear to be value in applying the model to prioritize annual replacements. As part of 
the 2019 LSLR Program, PWSA primarily used a combination of historical records, curb box inspection, 
and meter replacements to prioritize replacements at 9,080 customers. However, only 56% of these 
customers had lead services lines, resulting in costly and unnecessary excavations. In contrast, the model 
indicates PWSA would find lead 90% of the time if it excavated at the 9,080 customers predicted as most 
likely to have lead (a mean probability of lead is 90%). The model identifies lead well for these customers 
because they represent those most likely to be lead.  

Identifying lead worsens when applying predictions to more customers, as predicted probabilities decrease 
and therefore make material discrimination less certain. For example, we applied the model to 35,000 
customers where historical data are missing or indicate lead. The mean predicted probability these 
customers are lead is only 44%. Historical data indicate PWSA would find lead in about 63% of these 
customers. Here, the model results in only a modest improvement to 66%. As a result, Pitt and PWSA do 
not support using the current model to plan replacements beyond an immediate planning cycle.  

These results suggest reliable model applications are limited to customers where predicted probabilities 
are extreme (high or low). A field verification of the model conducted since July 2019 confirms these 
findings. For those customers with a predicted probability of lead greater than 80% and less than 20%, 
precisions of 80% and 85% were verified for lead and non-lead, respectively. However, the field verification 
indicates the model performs poorly for more moderate predicted probabilities.  

Pitt and PWSA plan to retrain the model with new field data collected in hopes of identifying highly probable 
lead lines to plan future replacements and expanding applications of the model pending revised 
performance. To support training and in recognizing that diagnoses can be expensive, Pitt provided an 
active learning plan to sample at up to 5,000 customers strategically recommended to improve predictions.  

In addition, Pitt analyzed correlations between service line materials and counts of customer water samples 
in which lead was detected. Customers where lead was detected at least twice are highly likely (>98%) to 
have lead service lines. Customers where lead was not detected at least twice are unlikely (>92%) to have 
lead service lines. Incentivizing customers to collect multiple samples could serve as a non-intrusive and 
inexpensive detection method and has the dual benefit of improving future predictive modeling.  

In addition to this report, Pitt separately delivered a database and maps of select model results.     
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1. Introduction 

Prior to the U.S. Environmental Protection Agency issuing the Lead and Copper Rule (LCR) in 
1991, there was no federal regulatory basis motivating municipalities to maintain records of water 
service lines. In older cities like Pittsburgh, this has led to over a century of unobserved changes 
influencing the extents of lead service lines. As a result, many municipalities face considerable 
uncertainty understanding the potential health risks of lead service lines and deciding what, if 
anything, should be done to reduce these risks.  
 
Uncertainty in service line materials is particularly problematic when municipalities are required 
to replace lead service lines in compliance with the LCR. The LCR requires that non-compliant 
municipalities annually replace 7% of public lead service lines until consecutive samples of lead 
from customers’ taps meet regulatory expectations. Uncertainty in service line materials affects 
confidence in the overall inventory, thus making it hard to allocate the appropriate resources to 
meet the 7% replacement rule. Such uncertainty also makes it hard to identify customers with 
lead service lines, which can lead to costly excavations of lead-free service lines.  
 
Since June 2016, the Pittsburgh Water and Sewer Authority (PWSA) has been under a 
replacement mandate. Given public concern over potential increases in water concentrations from 
partially replaced lead service lines, PWSA’s board endorsed full service line replacements, 
offering to replace customers’ private lead service line for free where the public side is scheduled 
for replacement. As such, PWSA needs confident information describing the materials of both 
public and private service line sections.   
 
In an effort to improve understanding of service line materials in its service area, PWSA started 
photographing service lines through curb box inspections (CBIs) and digitizing historical records 
in parallel with replacing service lines. These three sources - photographs of service lines from 
CBI program, digitized historical records, and service line observations made during replacements 
- have been primary sources of information guiding PWSA’s decision making with respect to lead 
service lines since 2016. While helpful, applications of this information to date result in costly and 
unnecessary excavations at homes that ultimately do not have lead service lines. As part of the 
2019 LSLR Program, over 44% of excavations were made at homes where the public-side service 
line material record was not known or lead, but were found to not have a public-side lead service 
line.    
 
Given these sampling efforts and the underlying spatial, temporal, and demographic trends driving 
lead service line installations and potential replacements, predictive modeling can help reduce 
the uncertainty in the locations of lead service lines in PWSA’s service area. Previous studies of 
the water system in Flint, MI have applied machine learning techniques or statistical models to 
improve upon lead inventories, inventory discovery activities, and inventory replacement 
decisions (Abernethy et al., 2016; Chojnacki et al., 2017; Abernethy et al., 2018). 
 
In May of 2019, PWSA contracted with the University of Pittsburgh (Pitt) to develop and apply 
models predicting the locations of its lead service line inventory. The objectives of this work are 
to provide estimated probabilities that the public and private service line is lead for each of 
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PWSA’s 70,196 residential customers and predict as lead or non-lead the public and private 
service line materials for these customers. This report summarizes the data, methods, and results 
associated with this work. A database of the estimated probabilities and material classifications 
has been separately provided to PWSA.  
 
2. Data Sources, Applications, and Limitations  

Table 1 summarizes the project data made available to Pitt as of July 2019, which describe 
customer locations, records or estimates of service line material, water data, and property and 
lot characteristics. What is documented in this report are only those data sources containing 
features selected for modeling. We also explored using child blood lead level and demographics 
by Census tract in model development, but this information proved to be unhelpful.  
 
Table 1: Summary of data used for predicting service line materials for PWSA’s customers.  
Data set name  Shorthand 

label 
Brief description Temporal 

coverage 
Spatial 
coverage 

Count Use in modeling 

Spatial 
locations of 
customers 
(PWSA, 2019b) 

LOC Customer address 
and location 

Received 
June 2019 

All 
customers 

70,196 
customers 

Scope of customers subject to lead 
service line replacement decisions; 
modeling spatial correlation; 6 
potential features for training and 
testing 

Lead service 
line 
replacement 
(PWSA, 2019b) 

LSLR Schedule of service 
line replacements 
and materials 
observed 

2/28/14  
To 
06/25/19  

58 out of 72 
neigh- 
borhoods 

 8,891 
customers 
 

Training and testing data describing 
dependent variable  

Water service 
line database 
(PWSA, 2019b) 

WSL Historical data 
describing original 
service 

From 1899 to 
2017 

All neigh- 
borhoods  

69,903 
customers 

24 potential features for training and 
testing 

Curb box 
inspections 
(PWSA, 2019b) 

CBI Service line 
material diagnosed 
using pictures 
taken at the curb 
box 

12/14/2016 to 
12/13/2018 

60 out of 72 
neigh- 
borhoods 

21,577 
customers 

6 potential features for training and 
testing 

Water sampling 
(PWSA, 2019b) 

TWS Levels of lead at 
customers’ taps 

5/24/17 to 
04/24/19 

68 out of 72 
neigh- 
borhoods 

7,886 
customers; 
8,505 
samples 
(5,960 non-
detect) 

2 potential features for training and 
testing 

Property tax 
assessments 

TAX Descriptions of 
property use, 
buildings, and lots 

11/12/1827 to 
4/18/19 

Entire 
service area 

69,319 
parcels 

86 fields, 42 of which we considered 
features for training and testing 

Meter 
replacements 
(PWSA, 2019b) 

MET Private service line 
material observed 
at meter  

File dated 
04/2019  

68 out of 72 
neigh- 
borhoods 

2,644 
customers 

Potential future training and testing 
data as described in narrative 

 
The meter dataset describing private service line materials observed when replacing meters 
was inconsistent with the material observed during excavation as indicated in the LSLR data. 
For example, 626 private service lines indicated as lead in the LSLR data were indicated as 
non-lead in the meter data, and 10 private service lines indicated as lead in the meter data are 
indicated as non-lead in the LSLR data. PWSA has suggested that these differences are 
primarily due to differences in the times in which data were collected. As a result, we assume 
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that the private service line is lead if either the LSLR or meter data indicate so for the purposes 
of training the model given we seek predictors of lead service lines.     
 
2.1 Water Service Lines 

PWSA provided four potential sources of information describing service line material:  
  
1. historical information describing initial service line material in the water service line 

database;  
2. materials diagnosed visually from pictures taken through the curb box in the CBI data set; 
3. materials observed during service line replacements in the LSLR data set;  
4. and materials observed during meter replacements in the meter data set.  

 
The historical records in the water service line database provide the most coverage (e.g., fewest 
missing values), recording values of the public service line material, private service line material, 
installation date, inspection data, and diameter. However, PWSA has not perfectly maintained 
these historical data. As such, historical material indicators were thought to be too inaccurate to 
serve as the dependent variable for modeling, and these data were considered only for 
independent model features.   
 
As part of routine water system maintenance (outside the scope of the lead service line 
replacement program), PWSA has replaced publicly owned lead service lines and coded the 
historical materials at these locations as “non-lead.” Pitt therefore removed these locations from 
the testing data, as they do not need a prediction.   
 
Of the approximately 21,577 locations for which a CBI was attempted, public and private materials 
were visually estimated for only 26.8% and 24.9% customers, respectively, due to an inability to 
locate the curb box, observe the service line, or visually diagnose the material. By cross-
referencing the material diagnosed through the curb box with that observed when replacing 
service lines, PWSA estimates that CBI diagnoses lead at 97% true positive rate and non-lead at 
72% true negative rate (PWSA, 2019a). While the CBI program was designed to be spatially 
representative, PWSA and Pitt felt the limitations of the CBI data were too significant to be used 
as the dependent variable for modeling. The CBI material diagnostics were considered as a 
potential independent model feature.  Given the LSLR data are confident visual observations of 
the material, we elected to use as the dependent (predicted) variable the material observed during 
service line replacements (the LSLR data set).  
 
The CBI data include binary indicators of lead or non-lead. The historical and excavation 
information specify the non-lead material (e.g., copper). We mapped the material indicators to 
binary values of 1 and 0 corresponding to “lead” and “non-lead” values. 
 
2.2 Customer Water Lead Concentrations  

PWSA provides kits for customers to collect samples of water from their household plumbing. 
Samples are collected for either compliance with state and federal regulations, at the request of 
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customers interested in lead concentrations in their drinking water, or to characterize the impact 
of lead service line replacements. 
 
As of October 2019, PWSA provided three water data sets: customer requested (CR) samples 
from October 2013 through July 2017; CR samples from January 2017 to September 2019; and 
samples collected as part of lead service line replacements (LSLR) completed or planned from 
January 2018 to January 2019. Each of these data sets includes a unique customer identifier, 
customer address, select dates describing the administration and custody chain of sampling, the 
lab performing the analysis, and a reported lead concentration. 
 
Given that research suggests highly variable lead concentrations immediately following a lead 
service line replacement, Pitt removed 8,326 LSLR samples associated with monitoring lead 
levels after a lead service line was replaced. We also removed 5,893 CR samples that were either 
cancelled, still at the lab for processing, not returned to PWSA by the customer, or otherwise 
flagged by PWSA or the lab as potentially problematic. 
 
The raw data include mixed representation of equipment detection limits. Where samples fell 
below the detection limit, the raw data may report the detection limit, a reading of zero, a “ND” for 
non-detection, or a lead concentration below the detection limit. In addition to different reporting 
practices, the detection limits for the two labs PWSA employs for certified sampling have different 
detection limits or have modified their limits over the sampling period. The lab ALS reports a 
detection limit of 2 parts per billion (ppb), and the lab CWM modified their detection limit from 4 
ppb to 2 ppb on January 22, 2019. Pitt applied the following criteria to change the reported 
concentration to the detection limit where the sample is expected to fall below the detection limit.  
 
The detection limit for the labs analyzing the older CR samples (prior to July 2017) are not 
reported. Thus, Pitt assumes a conservatively high detection limit of 4 ppb for these samples (n 
= 5,493). A total of 3,594 CR and LSLR samples report the lab and chain of custody dates. For 
these samples, Pitt assigned the detection limit as described above. If the date at which the 
sample was analyzed was missing, Pitt assumed the analysis took place 6 days after the lab 
received the sample, a lag estimated from those samples reporting full chain of custody dates. 
 
Where the lab analyzing the sample and analysis dates are both missing (n = 4,183), Pitt assumed 
detection limits of 2 ppb prior to January 22, 2019 and 4 ppb after the earliest date of record 
associated with the sample. Events used to determine the earliest date of record include the 
customer request date, all mailing dates for shipping and receiving the sample kit and sample, 
the date at which the sample was collected, and any dates associated with correspondence from 
PWSA to customers. 
 
In the raw data, the same customer identifier can be associated with multiple samples reporting 
the same lead concentration on at least one duplicate date field. In many cases, these repeated 
samples reflect multiple valid samples taken at different locations downstream of the same service 
line, such as in a multi-family unit. However, Pitt removed 258 samples that appear to be 
genuinely duplicated as defined by repeated values for the customer identifier, the address, the 
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lead concentration after correcting for detection limits, and any of the date fields. For actual 
multiple samples from the same customer, Pitt used the maximum concentration for machine 
modeling and counts of samples in which lead was detected for linear modeling.  
 
The final sample of water data consists of 18,661 samples for which 4,662 customer identifiers 
and 10 addresses are missing. Of these samples, 13,574 report lead levels below detection limits.  
 
2.3 Property Assessment Data 

Allegheny County property assessments include 86 fields describing information used for the 
purposes of taxing real estate. Exemplary information includes property use (e.g., single family 
residential), age, floor space (for residential properties only), assessed value, building quality, and 
lot size. After merging this dataset with the customers dataset, the portion of the missing values 
of property assessment fields ranges between less than 1% to about 7%. 
 
3.  Sample Preparation  

3.1 Joining Data 

Data provided by PWSA are observed by customer, whereas the property tax assessment data 
are prepared by parcel. There are several reasons why these units of observations may not align. 
Approximately 1,000 PWSA customers are multiple addresses served by the same water service 
line, a situation referred to as a “party line.” In Allegheny County, multiple parcels may be 
associated with the same billing address, even if not served by a “party line.” Finally, historical 
multi-parcel sales may introduce discrepancies between the official addresses on record at the 
County and PWSA.    
 
PWSA previously hired a consultant to match 69,203 (98.5%) of their customers subject to LCR 
compliance with a County tax assessment record. We were able to match an additional 116 
customers to County tax assessment records by address strings. The remaining 877 customers 
(1.2%) are unmatched to a County record.  
 
3.2 Handling Missing Values 

Figure 1 summarizes the missing values in model features. The property development decisions 
influencing initial service line installation and potential replacements are expected to demonstrate 
spatial correlation. Table 2 indicates a positive spatial autocorrelation in the spatial structure of 
the CBI data as measured by Moran’s I statistics with queen contiguity-based spatial weights 
(Moran, 1950). Based upon the results in Table 2, we used Kriging technique (Matheron, 1973) 
to spatially estimate the missing values for the year of construction and CBI public and private 
material. 
 
Figure 2 demonstrates the estimation of the missing values of CBI data for the public service line, 
where values closer to 0 and 1 indicates higher and lower probability of lead in the material of the 
public side of the service line. Other features were missing for less than 2% of the observations. 
For these continuous and discrete values, we applied the median and mode, respectively. 
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Figure 1. Missing values for model features considered for predicting the service line material for PWSA 
customers. Features missing less than 5% of their values not shown for clarity.     
 
Table 2: Moran’s I calculated by Monte Carlo simulations over a thousand permutations for three 
independent variables.  
Feature Moran’s I P-value 

CBI (public side) 0.124 < 0.001 

CBI (private side) 0.122 < 0.001 

Origin year of the construction 0.667 < 0.001 

Water samples 0.081 <0.001 
 
3.3 Feature Selection 

Starting with the potential predictive features summarized in Table 1, we use Recursive Feature 
Elimination (RFE) (Guyon et al., 2002) as an effective feature selection technique that at each 
step recursively eliminates feature(s) with the weakest predictive power until no feature is left. 
The importance of the predictors is calculated at each iteration so that eventually, RFE selects 
and returns a subset of features with the highest predictive power. We paired RFE with random 
forest (Tin Kam Ho, 1995) to reduce our feature space from more than 88 to 24 features to be 
considered for both predicting lead public and private service lines. Figures 3a and 3b show the 
selected features selected for public and private service lines, respectively.    

 



9 

 

Figure 2: An example of interpolating missing curb box inspection results using inverse distance weighting 
methods with a power of 2. Training data are on the left and interpolations are on the right. Results are 
shown for the public portion of water service lines. Darker and lighter coloring indicates a higher and lower 
probability of lead, respectively.  

3.4 Final Sample 

Our training sample consists of 8,142 observations of public and private service line materials. 
Importantly, our sample reflects conditions prior to February 2016, which is when PWSA’s records 
of lead service line replacement began. This approach preserves as many original lead service 
lines as possible so that the modeling reflects the underlying data generating processes 
influencing the materials in service.  

3.5 Sample Weighting 

Most of the training data are from PWSA’s lead service line replacement (LSLR) program. This 
program prioritizes neighborhoods where PWSA’s historical data indicate lead is present and 
does not excavate at locations that have a historical record of non-lead, suggesting potential 
sampling or spatial biases. As a result, the distribution of predictive features in the training data 
differ from the respective distribution in the test sample, a situation referred to as covariate shift. 
Figure 4 shows an example of covariate shift for the historically recorded materials of public 
service lines. Covariate shift can compromise model accuracy.  
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Figure 3. Feature importance scores for predicting public (a.) and private (b.) lead service lines.   
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Figure 4: An example demonstrating differences in the distribution of the historically recorded materials for 
public service lines. Severe differences in the distribution of predictive features can cause covariate shift 
and compromise predictive accuracy.   
 
Figure 5 collapses all potential predictive features into two dimensions using t-Distributed 
Stochastic Neighbor Embedding (t-SNE) to visualize potential distributional differences between 
the testing and training samples. Figure 5.a shows the instances of training and test sets 
embedded into two-dimensional space using the t-SNE algorithm. Figure 5.a shows a high level 
of distinction between the training and the prediction set, suggesting an imbalance in the 
distribution of the predictive features such that covariate shift is likely. Similar distributions of the 
predictive features between the training and testing data would appear as shown in Figure 5.b. 
 
To alleviate the effect of covariate shift, the training data can be weighted (with values between 0 
and 1) so that the distribution of training instances is more aligned with those in the testing set, 
where higher weights indicate more alignment. We used a density ratio estimation (DRE) 
technique called unconstrained Least-Squares Importance Fitting or “uLSIF” (Kanamori, Hido, 
and Sugiyama, 2009) to weight the training data.   
 

4.  Machine Learning Methods 

Using the 8,142 customers with material diagnoses as training data, Pitt developed predictions of 
public and private service line materials for 60,941 PWSA customers. Our predictions are two-
fold. First, we estimate the probability that any given customer’s public or private service line is 
lead. Second, we apply a probability threshold to discriminate as either lead or non-lead each 
service line section. While our predictive model is relevant to all of PWSA’s 70,196 residential 



12 

customers eligible for the service line replacement program, we were unable to develop 
predictions for approximately 1.6% of these customers due the degree of missing features 
describing these customers.  

It should be noted that - in addition to the modeling described below - we attempted to develop 
deep learning models of service line materials in PWSA’s system. However, the sample collected 
to date were insufficient for deep learning methods.   

Figure 5: Model features were collapsed into two dimensions (latent feature 1 and latent feature 2) using t-
Distributed Stochastic Neighbor Embedding (t-SNE) to explore the potential for covariate shift introduced 
by differences in the distributions of feature values across the training and testing data. The upper figure 
(a) demonstrate significant differences in the features, whereas the lower figure (b) does not.   
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4.1 Spatial Cross Validation 

To evaluate model performance, we use the well-known statistical resampling procedure known 
as K-fold cross validation. In this procedure, the training set is split randomly into K folds (aka, 
subset or partitions of the training sample) in the way that each fold is put aside for validation, and 
the model is learned using the remaining K-1 folds. The process is repeated K times so that every 
fold is used once as the validation set. 
 
Traditional cross validation would randomly select observations for training and validation as 
demonstrated in Figure 6.a. However, this approach does not account for spatial trends, falsely 
representing the training and testing samples as independent (Miller, 2004). Traditional cross 
validation as applied to spatial data can lead to overestimation (Roberts et al., 2017; Brenning, 
2012). These issues are particularly problematic when predictions are developed outside of the 
geographies represented by the training data, which is PWSA’s intended use.  
 
To produce more robust and realistic predictions, we employ spatial cross validation. Spatial cross 
validation partitions samples based on their geographical coordination to reduce the spatial 
dependence of training and test samples. We first cluster the data using K-means, then treat each 
cluster as fold in cross validation. Figure 6.b shows the spatial clustering of the PWSA sample. 
 

 
Figure 6. PWSA’s training data sampled a) randomly and b) in clusters.    
 
4.2 Model Selection 

Pitt tested different classification methods for their performance in discriminating lead from non-
lead service lines in the training data. Methods tested include random forest, gradient boosting 
machine (GBM), deep learning, support vector machine (SVM), logistic regression, and K nearest 
neighbors (KNN). GBM performed best using the area under the receiving operator curve 
(AUROC) via a grid search. The AUROC values for the GBM model are 82.9% and 81.9% for 
public and private service lines, respectively. The selected GBM model hyperparameters are 
summarized in Table 3. 
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Table 3: The hyperparameters associated with the selected GBM model tuned via grid search.  
Hyperparameter Public Side Value Private Side Value 

Depth 6 8 

Number of trees 90 135 

Shrinkage 0.1 0.1 

 
4.3 Probabilistic Predictions  

Figure 7 shows the distribution of predicted probabilities that private and public service lines are 
lead PWSA customers in the prediction sample (n = 60,941). As expected, the predicted 
probabilities are lower for those observed as non-lead and higher for those observed as lead. 
Distributions for the unobserved data - which largely skew low - confirm PWSA’s efforts to target 
neighborhoods expected to have relatively high shares of lead service lines. However, the 
predictions for those customers for which private service line materials are unobserved are 
bimodal, indicating some areas partly unexplored have high counts of private lead service lines.   

 
Figure 7. The distribution of predicted probabilities that PWSA customers’ private and public water service 
lines are made from lead.  
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4.4 Binary Discrimination 

In order to derive binary predictions from predicted probabilities, a probability threshold is applied 
to differentiate positive binary predictions (e.g., a lead service line) from negative predictions (e.g., 
a non-lead service line). Table 4 shows a hypothetical example of predicted probabilities and 
observed materials for 10 homes starting and ending at 101 and 110 Main St. Assuming a 
probability threshold of 60%, the hypothetical model would predict 5 homes have lead (103 - 107 
Main St.) and the remaining 5 homes do not have lead (non-lead). As indicated in Table 4, 
assuming a probability threshold of 60% to assign lead and non-lead predictions to each property 
is not always accurate. For example, material discriminations for house numbers 101, 104, and 
110 are not incorrect. Thus, we need ways to assess the accuracy of binary discrimination 
assuming different probability thresholds.  
 
Table 4: Hypothetical service line observations and predicted probabilities for 10 homes. 

 
Address 

 
Observed 
Material 

 
Predicted 
prob. lead 

Threshold of 10% Threshold of 60% Threshold of 80% 

Classification Result Classification Result Classification  Result 

101 Main St Lead  20% Lead  TP Non-lead  FN Non-lead  FN 

102 Main St Non-lead  20% Lead  FP Non-lead  TN Non-lead  TN 

103 Main St Lead  62% Lead  TP Lead  TP Non-lead  FN 

104 Main St Non-lead  65% Lead  FP Lead  FP Non-lead  TN 

105 Main St Lead  71% Lead  TP Lead  TP Non-lead  FN 

106 Main St Lead  90% Lead  TP Lead  TP Lead  TP 

107 Main St Lead  80% Lead  TP Lead  TP Non-lead  FN 

108 Main St Non-lead  60% Lead  FP Non-lead  TN Non-lead  TN 

109 Main St Non-lead  10% Non-lead  TN Non-lead  TN Non-lead  TN 

110 Main St Lead  30% Lead  TP Non-lead  FN Non-lead  FN 

   Recall 100%  67%  17% 

   Precision 67%  80%  100% 

   Accuracy 70%  70%  50% 

   F1 80%  73%  29% 
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The frequency of correct - and therefore incorrect - predictions are how binary predictions are 
evaluated for accuracy. Figure 8 summarizes the four possible outcomes associated with the 
correctness of any given binary prediction. True positives and true negatives are correct 
predictions, and false positives and false negatives are incorrect predictions. 
 
 Positive observation Negative observation 

Positive prediction True positives (TP) False positives (FP) 
Type 1 error 

Negative prediction False negatives (FN) 
Type 2 error  

True negatives (TN) 

Figure 8: Confusion Matrix showing the possible combinations of predictions and observations. 
 
The measures of correctness in Figure 8 are used to define discrimination performance. Common 
measures of discrimination performance are summarized in Table 5. Drawing on the example in 
Table 4, applying a probability threshold of 60%, the recall would be 4 true positives / (4 true 
positives + 2 false negatives) = 67%. As shown in Table 4, assuming a lower threshold of 10% 
captures all the positive observations (i.e., correctly predicts lead) but introduces a lot of false 
positives (i.e., incorrectly predicts lead). This has the effect of increasing recall from 67% to 100% 
but decreasing the precision from 80% to 67%. Conversely, increasing the threshold to 80% 
captures all of the negative observations but introduces a lot of false negatives. 

Table 5: Common measures of binary discrimination performance.  
Name Equation Interpretation 

Precision       TP / (TP + FP)  
or TP/all positive predictions 

Share of correct positive predictions 
relative to all positive predictions  

Recall  
(or Sensitivity)  

      TP / (TP + FN) 
or   TP/positive observations 

True positive rate 

Accuracy       (TN + TP) /  
      (TP + TP + FN + TN) 

Share of correct predictions relative 
to all observations 

F-scores       F = (1+B2)(Recall*Precision) / (B2 Recall + Precision) 

      With B = 1 
           F1 = 2(Recall*Precision) / (Recall + Precision) 

 

Harmonic mean of recall and 
precision (F1) 

 
The example in Table 4 demonstrates the common challenge of selecting probability thresholds 
that balance correctly predicted positive and negative predictions. Low probability thresholds (i.e., 
probably that a service line is lead) will capture more true positive observations (i.e., observed 
lead) but also increase false positives. In practice, a low probability threshold will lead to 
conservatively high estimates of customers eligible for a service line replacement, which better 
ensures lead service lines are replaced but increases excavations at customers without lead 
service lines. In this case, the precision (or the probability of finding lead when excavating) will be 
low, but relatively few lead service lines will be missed. Conversely, higher probability thresholds 
will lead to conservatively low counts of customers eligible for a replacement, but the resulting 
precision - the rate of finding lead when excavating - will be higher. However, higher thresholds 
narrow those customers eligible for a replacement to those most likely to have lead service lines, 
and, as a result, increase the likelihood that lead service lines remain in service.  
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These trade-offs are also demonstrated in the hypothetical distributions of predicted probabilities 
shown in Figure 9. Figure 9.a. shows hypothetical probability distributions that perfectly 
discriminate between lead and non-lead. In contrast, Figure 9.b. includes regions were the 
probability distributions for each material overlap, representing areas of high discrimination 
uncertainty. In other words, in this shared region of predicted probability, the predictions do not 
discriminate well between lead and non-lead relative to those predictions near the extremes of 0 
and 1. The assumed threshold determines the balance of how these uncertain predictions are 
either cast as false negatives or false positives. While the total false predictions remain the same, 
the count of false positives decreases as the assumed threshold increases. As a result, a higher 
threshold would result in a better precision, as the share of correct predictions of lead increases 
as the threshold increases. Conversely, as the assumed threshold decreases, the count of false 
negatives decreases, but the count of false positives increases.  

 
Figure 9: Distributions of predicted probabilities for hypothetical sample of service lines. Panel a. shows a 
perfect discrimination. Panel b. shows a more realistic situation that requires false classifications, where 
selected probability thresholds are selected to balance true positives and negatives.   
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There are no prescriptions for choosing a binary classification technique and respective means 
for evaluating model performance. Judgment regarding intended model applications is needed, 
with particular sensitivity to relative differences in the consequences of type I or type II errors. For 
example, estimating a lead service line inventory should balance predictions of lead and non-lead 
service lines (balance type I and II errors). Probability thresholds at maximum model accuracy or 
F1 score are intended to achieve this balance. Accuracy is the simpler of these two, measuring 
the share of total correct predictions (positive and negative) relative to all observations. However, 
accuracy is a poor performance measure of unbalanced data. For example, say 95 out of 100 
homes were free of lead service lines. A model that predicted all 100 homes are free of lead 
service lines would have an accuracy of (95 + 0)/100 or 95%. This model appears to perform well 
but is biased towards the most frequent observation (lead free service lines) and did not correctly 
predict any homes with lead service lines. Alternatively, the F1 score (the F score in Table 5 with 
B = 1) is appropriate for model applications that involve large pools of customers (e.g., estimating 
PWSA’s inventory by material), as ongoing replacements will lead to an increasingly unbalanced 
sample (fewer lead service lines and more non-lead service lines). Importantly, appropriate uses 
of thresholds do not imply the model will perform well.  
 
Different assumptions about the term B in F-score provide a means to explicitly favor type 1 or 
type 2 errors. Selecting probability thresholds at maximum model F2 score (B = 2) would favor a 
low type 2 error (or a low false negative rate). This approach would miss few lead service lines 
but at the expense of poor precision, meaning finding non-lead relatively frequently when 
excavating. In contrast, selecting a probability threshold at maximum F0.5 (B = 0.4) score would 
increase precision when excavating but at the expense of leaving lead lines in service.  
 
For this study, Pitt presents model precision, recall, F1, and F0.5 scores for different probability 
thresholds that represent different model applications. This provides PWSA with some flexibility 
in applying model results. For example, should PWSA want to use the results when estimating an 
inventory, we would recommend choosing a threshold at the maximum F1 score to balance false 
positives and negatives. Should PWSA prefer to prioritize finding lead when excavating (a low 
false positive rate), we would recommend choosing a higher probability threshold, such as the 
threshold associated with F0.5. These different model applications are demonstrated in Section 
6. As such, Pitt provides customer level prediction for both F1 and F0.5.  

5. Summary of Existing PWSA Programming 

PWSA currently uses their historical records (WSL) to prioritize service line replacements. All 
customers except those with historical indicators of non-lead are eligible for a replacement. Table 
6 cross references these service lines with those observed when replacing service lines. Table 6 
indicates that PWSA should expect a precision – a true positive rate - of around 63% when 
excavating at homes with a historical label of either LEAD, UNKNOWN, or missing records (e,g., 
NoInfo), and that there are approximately 35,000 customers with these labels. As of the end of  
2019, PWSA excavated services lines at 9,080 locations with a lead or unknown historic record. 
As part of this work, PWSA observed non-lead during approximately 44% of excavations.   
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Table 6: The performance of PWSA’s historical public service line material records through July 2019.   
Historical values 
assumed lead 

n Precision: 
TP/(TP + FP) 

Recall: 
TP/(TP+FN) 

F1 
(see Table 5) 

F0.5 
(see Table 5) 

Find 
Lead 

Miss 
Lead 

Lead 14,347 70.8% 38.8% 50.2% 60.8% 10,164 16,000 

Lead, Missing Value* 35,319 63.0% 85.2% 72.4% 66.5% 22,283 3,881 

All 60,941 42.9% 100% 60.10% 48.50% 26,164 0 

* Missing values include both missing labels and a label of “UNKNOWN” 

6. Model Applications 

We demonstrate three primary applications of the model:  

1) prioritizing an annual cycle of replacements (or excavations) with the goal of reducing 
unnecessary excavations in the short-run;  

2) prioritizing a larger number of replacements (or excavations) for longer term planning;  
3) and estimating inventories of service line material for the entire service area.  

These applications differ in the threshold assumed to distinguish lead from non-lead. For example, 
prioritizing replacements involves summarizing model performance for a pool of customers most 
likely to be lead. Here, the probability threshold discriminating lead from non-lead is implied by 
the count of customers targeted for replacement. In contrast, applying the model to estimate 
complete material inventories involves selecting a threshold that balances true (or false) positive 
and negative predictions. In each application, we compare the model results to either a precision 
of 63% (observed excavating at homes where historical data is either missing or indicate lead) or 
the rate at which PWSA found non-lead during excavations in 2019, which was 44%. 
 
Each application is focused exclusively on the publicly owned service lines and draws on model 
results summarized in Figure 10. However, similar applications to privately owned service lines 
could readily be made by drawing parallel results summarized in Figure 11.  
 
6.1 Prioritizing an Annual Cycle of Replacements 

PWSA excavated 9,080 locations by the end of 2019. Non-lead service lines were observed at 
approximately 4,000 (44%) of these locations, resulting in costly and unnecessary excavations. 
In contrast, by excavating at those 9,080 customers where lead is predicted as most probable (a 
mean probability of lead of 90%), PWSA could improve precision to approximately 90%, which 
would significantly reduce unnecessary excavations. Readers can verify model performance by 
examining Figure 10. Figure 10.b shows counts of customers for different assumed probability 
thresholds. Applying the model to the 9,080 customers most likely to be lead (the 9,080 customers 
furthest to the right) would result in a precision of 90%, as indicated in Figure 10.a.   
 
Excavating at these 9,080 customers, the model indicates that only about 910 (approximately 
10% of 9,080) service lines would be non-lead. In this example, the model therefore could reduce 
unnecessary excavations by 3,090 customers. At an estimated cost of $1,300 per excavation, the 
savings from applying the model in this manner are nearly $4,000,000. 
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Figure 10: a. Model diagnostics and b. predicted customer counts assuming different probability 
thresholds for public service lines. 
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Figure 11: a. Model diagnostics and b. predicted customer counts assuming different probability 
thresholds for private service lines. 
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Figure 10.a also indicates the recall rate for these 9,080 customers is relatively low at 42%. This 
occurs because the threshold implied by this pool of 9,080 customers leaves many lead lines in 
service (a high false negative count), a necessary trade-off for a precise application of the model.  
 
6.2 Prioritizing a Large Number of Replacements 

Assume that PWSA were interested in planning replacements for a bigger pool of customers. For 
example, PWSA plans additional investigation or replacements at the 35,000 homes indicated as 
having lead or missing historical data as of July 2019. As summarized in Table 6, excavations to 
date indicate these historical labels are only 63% precise. As summarized in Figure 10, applying 
the model to these 35,000 customers leads to only a modestly more precise outcome of 66%. 
This application is considerably less precise than the 90% estimated when applying the model to 
prioritize annual replacements at fewer customers (Section 6.1). Figure 10.b indicates the implied 
probability threshold associated with these customers is only 24%. This low threshold falsely 
discriminates lead for many customers (a high count of false positives), resulting in an imprecise 
application of the model. Why consider replacements for a larger pool of customers? Such an 
approach leads to fewer lead lines in service, but at the necessary expense of imprecision and 
thus more unnecessary excavations.  
 
6.3 Estimating Counts by Service Line Material 

In contrast to the above applications that imply a probability threshold given a targeted pool of 
customers, estimating counts by service line material involves explicitly choosing a probability 
threshold that balances correct and incorrect predictions across all customers. Here, we 
summarize thresholds at maximum values of F1 and F0.5. F1 evenly balances correct and 
incorrect predictions. F0.5 balances correct and incorrect predictions but favors finding lead.  
   
The model demonstrates only marginal value in estimating materials for all customers. Using 
maximum F1 to select a probability threshold, the model achieved a precision of 73%, whereas 
the historical data alone were at 63%. The reason for this is that too few predicted probabilities 
are extreme enough (high or low) to discriminate well between lead and non-lead service lines for 
all customers. Using maximum F0.5 to select a probability threshold, precision is increased from 
73% (F1) to 84% (F0.5), but recall decreases from 80% (F1) to 62% (F0.5). Similar to the 
discussion in Section 6.2, these applications differ because a more precise model (F0.5) requires 
more false negatives (leaving lead in service).   
 
6.4 Summary of Model Applications 

Table 7 and Figure 10 summarize the above model applications. By applying the model to different 
pools of customers under different decision contexts, these applications exemplify the inherent 
trade-offs between precision and the count of false negatives (the lead lines left in service).  These 
applications indicate that the value of the model is currently limited to those customers where the 
predicted probabilities are extreme (high or low). As such, Pitt does not currently recommend 
using the model to estimate inventories of service lines by material or plan replacements for 
customers beyond those planned for an annual planning cycle.  
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Table 7: Summary of model applications  
Model 
application 

Strategy Selection of 
probability 
threshold  

Customer 
count  

Probability 
threshold  

Mean 
probability 
lead 

Precision  Strengths Trade-off 

Reduce 
unnecessary 
excavations in 
annual cycle  Apply model 

to count of 
customers 
subject to a 
replacement  

Threshold is 
implied by 
constraining 
application to 
only those 
customers to 
be replaced 

9,080  
(assumed 
using year 
2019 data) 

77% 
(implied) 90% 90% 

Precision is high 
because material 
discriminated for 
customers most 
likely to be lead  

Prioritizing finding 
lead leads to a high 
share of false 
negatives (leaving 
lead in service) 

Plan long-term 
replacements 
across service 
area  

35,000  
(customers 
where 
historical data 
are missing or 
indicate lead) 

24% 
(implied) 44% 66% 

The application 
covers all likely 
excavations  

Lead discrimination 
performs poorly for 
customers 
moderately likely to 
be lead, resulting in 
more unnecessary 
excavations 

Estimate 
counts of 
service lines 
by material 

Select a 
probability 
threshold that 
balances true 
(or false) 
positive and 
negative 
predictions 

Threshold at 
maximum F1 
value balances 
true positive 
and negative 
outcomes 

61,000  
(all customers) 77% 44% 73% 

The application 
covers all 
customers and 
balances true 
positives and 
negatives 

Too few customers 
have extreme 
probabilities, making 
material 
discrimination 
uncertain 

Threshold at 
maximum F0.5 
value favors 
finding lead 

61,000  
(all customers) 

75% 44% 84% The application 
covers all 
customers but 
favors “finding 
lead”  
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7. Active Learning 
 
Pitt applied active learning algorithms on PWSA’s data to identify locations where additional data 
are most likely to improve predictions. Pitt used Hierarchical Sampling, which exploits the cluster 
structure of the test data to identify small subsets of customers where additional training data 
would be both informative and representative of the feature diversity across PWSA’s customers. 
Twenty clusters were identified in the training data, and Pitt selected the 10 locations whose 
material predictions were most uncertain from each cluster to produce an active learning sample 
of 5,000. Predicted service line materials are most uncertain when the predicted probability the 
line is lead is near 0.5. For these customers, the model does no better than a chance guess. 
Thus, should PWSA be interested in reducing the active learning sample, Pitt recommends PWSA 
keep those locations closest to a predicted probability of 0.5 while sampling in the spatial clusters 
associated with the 5,000 locations flagged for active learning. The active learning results are 
submitted separately from this report as discussed in Section 11. 
 
8. Clustering Excavation and Active Learning Locations 
 
Pitt recognizes that PWSA can achieve cost efficiencies in their work order by spatially clustering 
their services. Those customers predicted as most likely to have lead service lines may or may 
not be spatially clustered. While not part of this scope of work, Pitt would be happy to work with 
PWSA to assess any spatial correlation associated with positive predictions or active learning 
recommendations that could assist PWSA in their programming.   
 
9. Water Data as Non-Intrusive Material Detection  
 
While water data are available for only 11% (n = 7,886) of customers, these data boost predictions 
of lead. Figure 12 shows median water samples increase as service lines are increasingly made 
of lead. 
 
There are many factors other than the service line material that could influence water lead 
concentrations, including, but not limited to, seasonal variation in temperature and water quality, 
water treatment changes, premise plumbing and fixtures, customer demands, and sampling 
procedures. Importantly, our sample reflects stable water treatment methods with respect to 
corrosion control. However, repeated samples from the same customers significantly reduce the 
influence of this variability on predicting service line materials. Table 8 shows the number of 
customers where lead was detected potentially multiple times for different service line material 
configurations. Table 9 shows customers are much more likely to have a lead service line as the 
count of water samples in which lead is detected increases. Regression demonstrates a highly 
significant relationship between the service line material and the count of samples in which lead 
was detected. Table 9 shows the predicated probability that either the public or private service 
lines are lead given the count of samples in which lead is (a) detected or (b) not detected.  
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Figure 12: a. The share of customers with detectable lead concentrations and b. variation in the 
concentration of lead in water sample given different service line material configurations for 7,886 PWSA 
customers. Repeated samples are reported for 442 customers for a total of 8,505 unique samples.    
 
Unfortunately, there are too few customers with multiple water samples to perform widespread 
predictions. However, targeted repeated water sampling for material diagnoses could serve as a 
helpful complement that reduces false negatives should PWSA prioritize replacements and 
excavations at customers predicted as most likely to have lead.   
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Table 8: Cross tabulation of customers showing counts of samples in which lead was detected in customers’ 
taps given different service line material configurations. Each cell includes the count of customers meeting 
the indicated detection count and material followed by the row share in parenthesis.  

Count of samples in 
which lead is detected  

L-private 
L-public  

L-private 
nonL-public  

nonL-private 
L-public  

nonL-private 
nonL-public  

Row 
total 

0 248 (22%) 26 (2%) 172 (15%) 682 (60%) 1,128 
1 564 (65%) 75 (9%) 134 (15%) 94 (11%) 867 
2 50 (74%) 3 (4%) 9 (13%) 6 (9%) 68 
3 2 (50%) 1 (25%) 1 (25%) 0 4 

  
Table 9: Predicted probabilities that either the public or private service line includes a. lead or b. is lead free 
given the counts of samples in which lead is detected or not detected.  

a. Count of samples in which 
lead is detected 

Count of 
customers 

Predicted probability lead is in the service line  
(logit(PLead) ~ B0 + B1 * count detects) 

0 1,128 40% 
1 867 88% 
2 68 98.8% 
3 4 99.9% 

a. Count of samples in which 
lead is not detected 

Count of 
customers 

Predicted probability the service line is lead free  
(logit(PLead free) ~ B0 + B1 * count non-detects) 

0 896 11.8% 
1 1,127 56.4% 
2 43 92.6% 
4 1 99.9% 

   
10. Field Testing of the Model 

Field verification conducted subsequent to delivering the trained model results to PWSA is 
summarized in Table 10. These data indicate that the model performs better at extreme 
predicted probabilities. For those customers with a predicted probability of lead greater than 
80% and less than 20%, precisions of 80% and 85% were verified for lead and non-lead, 
respectively. 
 
Table 10: Summary of field verification. Field verification data were collected after July 2019.  

Predicated 
probability lead 

Predicted 
lead 

Predicted 
non-lead 

Verified 
Lead (TP) 

Verified Non-
Lead (FP) Precision 

Greater than 80% 831 0 662 169 80% (lead) 
40% to 80% 2106 32 1203 903 57% (lead) 
20% to 40% 0 471 162 309 66% (non-lead) 
Less than 20% 0 212 31 181 85% (non-lead) 
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11. Supplemental Resources 
 
Supplemental to this report Pitt has separately provided the following: 
  
a. Four maps  

i. Threshold-.41(F1 score).html, 
ii. Threshold-.41(F1 score)-Details.html, 
iii. Threshold-.61(F0.5 score).html, 
iv. Threshold-.61(F0.5 score)-Details.html)  ` 

 
b.  A dataset that includes the following fields by customer 

i. The customer weight to correct for potential sampling and spatial biases 
ii. The probability each customer has a lead service line as of July 2019 
iii. The predicted material as of July 2019 assuming a probability threshold that 

maximizes F1 
iv. The predicted material as of July 2019 assuming a probability threshold that 

maximizes F0.5 
v. A flag indicating the predicted material using F1 differs from PWSA’s historical data 
vi. A flag indicating the predicted material using F0.5 differs from PWSA’s historical data 
vii. A flag indicating the customer is recommended for active learning 
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